Step of Proof: connex_functionality_wrt_implies
12,41
postcript
pdf
Inference at
*
1
I
of proof for Lemma
connex
functionality
wrt
implies
:
1.
T
: Type
2.
R
:
T
T
3.
R'
:
T
T
4.
x
,
y
:
T
.
R
(
x
,
y
)
R'
(
x
,
y
)
5.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
6.
x
:
T
7.
y
:
T
R'
(
x
,
y
)
R'
(
y
,
x
)
latex
by ((ReplaceWith
x
,
y
:
T
. {
R
(
x
,
y
)
R'
(
x
,
y
)} 4)
CollapseTHENA (((Unfold `guard` 0)
Co
CollapseTHEN ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 4:n)) (first_tok :t
C
) inil_term)))
))
latex
C
1
:
C1:
4.
x
,
y
:
T
. {
R
(
x
,
y
)
R'
(
x
,
y
)}
C1:
5.
x
,
y
:
T
.
R
(
x
,
y
)
R
(
y
,
x
)
C1:
6.
x
:
T
C1:
7.
y
:
T
C1:
R'
(
x
,
y
)
R'
(
y
,
x
)
C
.
Definitions
{
T
}
origin